

We can form linear equations based on the following:

Triangles

Angles

Side Lengths

<u>Any Triangle</u> All angles add to 180° $\textcolor{pink}{\triangle} + \textcolor{purple}{\triangle} + \textcolor{teal}{\triangle} = 180^\circ$	<u>Any Triangle</u> Straight Line Angle $\textcolor{teal}{\triangle} + \textcolor{blue}{\triangle} = 180^\circ$ We also know that $\textcolor{pink}{\triangle} + \textcolor{purple}{\triangle} + \textcolor{teal}{\triangle} = 180^\circ$	<u>Isosceles Triangle</u> base angles are equal $\text{each } \textcolor{teal}{\triangle} = \frac{180 - \textcolor{purple}{\triangle}}{2}$	<u>Equilateral Triangle</u> each $\textcolor{teal}{\triangle} = 60^\circ$	<u>Right-Angled Triangle</u> Area = $\frac{1}{2} \times \textcolor{teal}{\text{---}} \times \textcolor{purple}{\text{---}}$ Pythagoras: $\textcolor{teal}{\text{---}}^2 + \textcolor{purple}{\text{---}}^2 = \textcolor{pink}{\text{---}}^2$
---	---	--	--	--

Squares and Rectangles

Angles

Side Lengths

<u>Square</u> all angles add to 360°	<u>Rectangle</u> all angles add to 360°	<u>Square</u> All sides are equal	<u>Rectangle</u> Opposite sides are equal	$\textcolor{purple}{\text{---}} = \textcolor{purple}{\text{---}}$	$\textcolor{teal}{\text{---}} = \textcolor{teal}{\text{---}}$
--	---	--	--	---	---

Parallelograms

Angles

Side Lengths

 all angles add to 360°	 add to 180°	 add to 180°	 add to 180°	 opposite angle are equal	 Opposite sides are equal
-----------------------------------	------------------------	------------------------	------------------------	------------------------------	------------------------------

Trapezia and Kites

 all angles add to 360°	<u>Isosceles Trapezium</u> Base angles equal Upper angles equal	 add to 180°	 add to 180°	Only 2 pairs add to 180° , unlike for parallelograms since a trapezium has only 1 pair of parallel sides	 1 pair of opposite angles are equal $\textcolor{teal}{\triangle} = \textcolor{teal}{\triangle}$
-----------------------------------	---	------------------------	------------------------	---	--

Angles and Parallel Lines

 Angles at a point add to 360°	 Opposite angles are equal	 Angles add to 180°	<u>Alternate Interior Angles</u> Equal	<u>Corresponding Angles</u> Both above: Equal
			<u>Same Side/ Co-Interior Angles</u> Add to 180°	 Both below: Equal

How To Solve Linear Equations

Example: Solve $2x - 3 = 5$

Way 1: Turn into words and work backwards

Step 1: Turn it into words

$$2x - 3 = 5$$

I am thinking of a number
 I multiply it by 2
 I subtract 3
 The answer is 5

What is my original number?

Step 2: Work backwards and do the opposite

Start with 5
 Add 3
 Divide by 2

Answer is 4

This method is limited when the equations become harder such as when we x terms on each side.

Way 2: Systematic steps

Our goal is to get x on one side completely its own. We want to get the letter (x) on the left and the numbers on the right.

i.e. our goal is to get $x =$ a number

Some hints:

- If we have brackets, we expand them (we don't have any brackets here, so this doesn't apply)
- If we have fractions, we get rid of them (we don't have any fractions here, so this doesn't apply)
- Collect 'like' terms

Always remember that anytime we move a term to the other side of the equals sign we do the opposite.

$$2x - 3 = 5$$

-3 means subtract 3 so we do the opposite and add (+) it when we move it to the other side

$$2x = 5 + 3$$

$$2x = 8$$

The 2 is multiplied with x so we do the opposite and divide ($\div 2$) when we move it to the other side

$$x = \frac{8}{2}$$

$$x = 4$$

Now we have reached our goal of getting x on its own and we are done

Basics

$$2x + 5 = 9$$

$$2x + 8 = -6$$

$$3x + 14 = 5$$

$$10 - 3x = 1$$

$$21 = 7 + 4y$$

$$2x + 5 = 9$$

$$2x + 8 = -6$$

$$3x + 14 = 5$$

$$10 - 3x = 1$$

$$21 = 7 + 4y$$

$$2x = 9 - 5$$

$$2x = -6 - 8$$

$$3x = 5 - 14$$

$$-3x = 1 - 10$$

Let's re-write this with the letter we want which is x on the left-hand side so it looks familiar to how we solve equations. It is fine to swap the order of what is on the equals sign. Why? $2 = x$ is the same as writing $x = 2$

$$7 + 4y = 21$$

$$2x = 4$$

$$2x = -14$$

$$3x = -9$$

$$-3x = -9$$

$$7 + 4y = 21$$

$$x = \frac{4}{2}$$

$$x = -\frac{14}{2}$$

$$x = -\frac{9}{3}$$

$$x = \frac{-9}{-3}$$

$$4y = 21 - 7$$

$$x = 2$$

Let's colour code to explain how to deal with the negatives

$$x = \frac{-14}{+2}$$

We know a negative with a positive is a negative, so we take care of the signs first and then do the numbers which is 7

$$x = -7$$

Let's colour code to explain how to deal with the negatives

$$x = \frac{-9}{+3}$$

We know a negative with a positive is a negative, so we take care of the signs first and then do the numbers which is 7

$$x = -3$$

Let's colour code to explain how to deal with the negatives

$$x = \frac{-9}{-3}$$

We know a negative with a negative is a positive, so we take care of the signs first and then do the numbers which is 3

$$x = +3$$

$$4y = 14$$

$$y = \frac{14}{4}$$

$$y = \frac{7}{2}$$

Note: It is fine to leave this as a fraction if the number doesn't fit in

Brackets and Fractions

$2(x + 2) = 5$	$3(2x - 1) = 5$	$\frac{2x + 5}{3} = 7$	$\frac{2(x - 1)}{5} = 3$	$\frac{2x}{5} - 1 = 7$
Recall • Expand brackets	Recall • Expand brackets	$\frac{2x+5}{3} = 7$	• Expand brackets • Clear fractions • Collect 'like' terms	Way 1: $\frac{2x}{5} - 1 = 7$
$2(x + 2) = 3$	$3(2x - 1) = 5$	$2x + 5 = 7(3)$	$\frac{2(x - 1)}{5} = 3$	Way 2: Get rid of the fraction straight away $\frac{2x}{5} - 1 = 7$
$2x + 4 = 3$	$6x - 3 = 5$	$2x + 5 = 21$	$\frac{2(x - 1)}{5} = 3$	Important: We have an extra term here which needs to also be multiplied by 5
$2x = 3 - 4$	$6x = 5 + 3$	$2x = 21 - 5$	$\frac{2x - 2}{5} = 3$	$2x = 8(5)$
$2x = -1$	$6x = 8$	$2x = 16$	$2x - 2 = 3(5)$	$2x = 40$
$x = -\frac{1}{2}$	$x = \frac{8}{6} = \frac{4}{3}$	$x = \frac{16}{2}$	$2x - 2 = 15$	$2x - 5 = 35$
		$x = 8$	$2x = 17$	$2x = 40$
			$x = \frac{17}{2}$	$x = 20$

More than one x term on one side

$2x + 5x + 3x = 100$	$2x + 30 + 3x + 50 = 180$	$2x + 30 + 3x + 50 + 5x + 80 = 180$	
Group any common algebra terms first	Group any common algebra terms Group any common number terms	Group any common algebra terms Group any common number terms	
$2x + 5x + 3x = 100$		$2x + 30 + 3x + 50 + 5x + 80 = 180$	
$10x = 100$	$2x + 30 + 3x + 50 = 180$	$10x + 160 = 180$	
$x = 10$	$5x + 80 = 180$	$10x = 20$	
	$5x = 100$	$x = 2$	
	$x = 20$		

An x term on each side

$2x - 4 = -3x + 5$	$5(x + 3) = 2(x + 6)$	$2(x - 1) + 3(x - 4) = 6$	$5(2x + 9) + 2(x + 11) = 3(3x + 4) + 46$
Group any common algebra terms Group any common number terms	• Expand brackets • Clear fractions • Collect 'like' terms (there may be two pairs)	• Expand brackets • Clear fractions • Collect 'like' terms (there may be two pairs)	$5(2x + 9) + 2(x + 11) = 3(3x + 4) + 46$
$2x - 4 = -3x + 5$	$5(x + 3) = 2(x + 6)$	$2(x - 1) + 3(x - 4) = 6$	$10x + 45 + 2x + 22 = 9x + 12 + 46$
Move and then group common terms	$5x + 15 = 2x + 12$	$2x - 2 + 3x - 12 = 6$	We need to collect like terms (orange and green colour pairs)
$2x + 3x = 5 + 4$	$5x + 15 = 2x + 12$	$2x - 2 + 3x - 12 = 6$	$10x + 45 + 2x + 22 = 9x + 12 + 46$
Now continue as usual	$5x - 2x = 12 - 15$	$2x + 3x = 6 + 2 + 12$	$10x + 2x - 9x = 12 + 46 - 45 - 22$
$5x = 9$	$3x = -3$	$5x = 20$	$3x = -9$
$x = \frac{9}{5}$	$x = -1$	$x = 4$	$x = \frac{-9}{3}$
			$x = -3$